Cellulosic Nanocomposite as a Potential Scaffold in Cardiovascular Tissue Engineering

Parisa Pooyan1,2,3, Il Tae Kim2,3, Cyrus Aidun1,2, Rina Tannenbaum 2,3, Hamid Garmestani2,3
1The Woodruff School of Mechanical Engineering, 2Institute of Paper Science and Technology, 3The School of Materials Science and Engineering

Motivation
Cardiovascular diseases (CVDs) lead the number one cause of death worldwide from the common diseases such as
- Atherosclerosis upon the deposition of plaque inside the wall of arteries
- Aneurysm from the ballooning of the weakened arterial walls
- Thrombosis through the coagulation of blood flow and clothing in unbroken vessels

Innovative Revascularization Techniques;
- Autograft Bypass (limited availability of healthy grafts)
- Synthetics (thrombogenic for smaller diameter < 6 mm vessel)
- Natural Substitutes (lack of compliance to physiological homeostasis)
- Tissue-Engineered Vessels (a promising approach)

Objective
Designing a Cardiovascular Scaffold with an Excellent Mechanical /Thermal Performance Reinforced by the Aligned Nano-sized Cellulose Whiskers within a Magnetic Field.

Background
Crystalline Cellulose: a Potential Avenue of Success in Cardiovascular Tissue Engineering due to its superior characteristics;
- The most abundant renewable biopolymer on earth yet possessing an environmentally benign nature
- Hydrophilic nature from the high density of the attached hydroxyl groups
- Biodegradable and Biocompatible
- Almost non-coagulative or thrombogenic
- Tear resistant and moldable with a low inner surface roughness
- Strong mechanical behavior in wet state and stable functionality for years
- Mechanically comparable to other reinforcing fibers while distinguishing a biocompatible composite for biomedical applications;

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile Strength (GPa)</th>
<th>Elastic Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Fiber</td>
<td>4.8</td>
<td>86</td>
</tr>
<tr>
<td>Steel Wire</td>
<td>4.1</td>
<td>207</td>
</tr>
<tr>
<td>Graphite Whisker</td>
<td>21</td>
<td>410</td>
</tr>
<tr>
<td>Carbon Nanotubes</td>
<td>11 – 63</td>
<td>270 – 970</td>
</tr>
<tr>
<td>Cellulose Crystal</td>
<td>7.5</td>
<td>145</td>
</tr>
</tbody>
</table>

Materials and Processing
The Synthesis of Cellulose Whiskers in our Nano-Materials Lab;
- Initiating from both Cellulose and Micro Cellulose Crystalline (MCC) precursor
- Acid hydrolysis of the cellulose chains incorporating a 62% Sulfuric Acid (H_2SO_4) concentration upon heating
- Purification and refinement of the solid residues by the repeated cycles of centrifugation
- Repeated cycles of dialysis against distilled water to achieve pH of 5-6

Results
A Preliminary design of the Nanocomposite through:
- grafting the synthesized Cellulose Nanowhiskers into a Cellulose Acetate Propionate Matrix
- casting the composite films within and outside a controlled magnetic field of 0.3T
- performing the nonlinear tensile testing and Thermogravimetric Analysis (TGA) to observe the Mechanical/Thermal performance of the systems

Conclusion
The addition of Cellulose Nano-Crystals at only 0.2 Wt% presents an Improved Mechanical Performance yet intensifies to about Four-Fold upon the alignment of Nano-Fibers within a small field of 0.3T.
- The Biomedical applications of Cellulose and its derivatives in Drug delivery and Wound dressing could confirm the Biocompatibility and Biodegradability of our designed scaffold.

Acknowledgment:
- Many thanks to the Institute of Paper Science and Technology at Georgia Tech for funding the project.
- The Woodruff School of Mechanical Engineering.
- The School of Materials Science and Engineering.