Characterizing Lignocellulosics from Miscanthus Cellulose - Lignin

Poulomi Sannigrahi
A.J. Ragauskas

School of Chemistry and Biochemistry
Georgia Institute of Technology
Agro-energy feedstock: Miscanthus

- **Perennial crop**
 - Grows to 11-14 ft in height/year

- **High biomass yields**
 - C4 grass with high rate of carbon fixation
 - 14 – 17 tons/acre (up to 27 tons/acre in trials)
 - Crop stands survive 25-30 years without significant loss in biomass yields

- Presently used in Europe for power and heat generation
Moisture and Ash content

- Moisture content of air dried miscanthus sawdust (6 mm)
 - 4.6%

- Ash content
 - Measured by ramped heating to 525 °C in a muffle furnace
 - 2.2%
 - Higher than Loblolly pine (0.2 %) & sweetgum (0.8 %)
Elemental analysis

Measured on 0.05 mm ground samples using elemental micro analyzer

Biomass to Bioethanol
Inorganic elements

- Analyzed in 6 mm ground samples
- Acid digestion followed by ICP-emission spectroscopy
- Coulometric method for total halogen (Cl+Br+I)
Inorganic elements

Biomass to Bioethanol
Inorganic elements

Biomass to Bioethanol
Acid soluble and insoluble lignin

- Klason lignin
 - Acid insoluble lignin isolated using NREL methods
 - Extractive free (40 mesh) sample hydrolyzed using 72 % H_2SO_4

- Acid soluble lignin
 - Measured using UV-vis spectrophotometer
 - Calculated from absorption at 205 nm
Lignin content and composition

Klason lignin
- Miscanthus: 25%
- Loblolly pine: 29%
- Sweetgum: 26%

Acid soluble lignin
- Miscanthus: 1.1%
- Loblolly pine: 0.5%
- Sweetgum: 2.6%

Guaiacyl
- SW: x
- HW: x
- Grass: x

Syringyl
- SW: x
- HW: x
- Grass: x

p-Coumaryl
- SW: x
- HW: x
- Grass: x
Carbohydrate analysis

- 40 mesh extractive free wood
- Hydrolyzed with 72% H$_2$SO$_4$
- Diluted to 3% H$_2$SO$_4$ and autoclaved at 121°C for 1 hour
- Sugars measured using HPLC with pulsed amperometric detector
Carbohydrate profile

% dry weight of starting material

- Arabinose
- Galactose
- Glucose
- Xylose
- Mannose

Miscanthus
Sweetgum
L.Pine

Biomass to Bioethanol
Solid-state 13C NMR of miscanthus

- Lignin C=O
- Lignin Phenolic
- Cellulose
- Lignin -OCH$_3$
- Hemicellulose R-COCH$_3$
Cellulose extraction

- **Holocellulose = Cellulose + Hemicellulose**
 - Obtained by treating extractive free wood repeatedly with acetic acid and sodium chlorite
 - Yield: 74% (by dry wt. of miscanthus)

- **Cellulose**
 - Boil holocellulose with 2.5 M HCl at 100 °C for 4 hours
 - Yield: 55% (by dry wt. of holocellulose)
Cellulose structure and crystallinity

- Solid-state 13C CP/MAS NMR of cellulose
- Cellulose structure and crystallinity

![Cellulose structure diagram](image)

Biomass to Bioethanol
Cellulose structure and crystallinity

- Degree of crystallinity: 48.9%
- Loblolly pine: 63%; Sweetgum: 53.3%
Milled wood lignin

- Purest form of lignin that can be isolated
- Wood extracted with ethanol and ethanol/benzene
- Milled for 130 hours
- Extracted with 96% Dioxane for 48 hours
- Dioxane collected, dried and lignin purified
Milled wood lignin – 13C NMR

Guaiacyl (g)
Syringyl (s)
p-Coumaryl (h)

COOR

h-4
s and g
4-O-5
α-CO/ β-O-4
β-5

Biomass to Bioethanol
Lignin molecular weight

- Lignin acetylated and dissolved in THF
- Molecular weight distribution measured using gel permeation chromatography

<table>
<thead>
<tr>
<th></th>
<th>Mn</th>
<th>Mw</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscanthus</td>
<td>8.33e³</td>
<td>1.38e⁴</td>
<td>1.65</td>
</tr>
<tr>
<td>Sweetgum</td>
<td>9.41e³</td>
<td>1.6e⁴</td>
<td>1.70</td>
</tr>
<tr>
<td>L. Pine</td>
<td>7.58e³</td>
<td>1.34e⁴</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Thank You!