Optimizing ECF Bleaching Technologies with a Mini-O
Oxygen Delignification

Chemical Usage of North American Bleach Plants

Improved environmental and operating cost performance
O Delignification: Background

Literature
- 1960/70s
 - basic engineering & chemistry
- 1980/early 90s
 - process parameters, energy, environmental, pretreatments, fundamental chemistry, pulp properties
- Late 1990’s
 - yield, selectivity, process parameters, lignin/carbohydrate chemistry, catalysts
Oxygen Delignification

Increased interest in one and two-stage oxygen delignification
An Alternative Approach

- **Mini-O**
 - Removes less lignin
 - Less capital
 - Easily retrofitted

- **Enhanced Mini-O**
 - Greater lignin removal
 - Multiple stages
 - H_2O_2 and/or ClO_2
Mill Application

- McKenzie
 - Cook to normal target
 - Reduce lignin with O_2
 - Sodium hydroxide instead of oxidized white liquor

- Low AOX pulps
 - No production loss
 - No recovery bottleneck
 - 25% delignification
Recent Studies

- Compared O systems
 - O, OO, mini-O

- Split the caustic charge in a \((E+O)D(E+O)\)

- Delignification
 - Lowest for mini-O
 - 13-25%, depending on caustic addition
Recent Studies

- Viscosities
 - O vs. (E+O)D(E+O)
 - Same delignification at 3.5% as O at 1.5%
 - Improved viscosity
(E+O)
(E+O+P)
(E+O)D(E+O)*
Delignification Results
Mini-O Delignification Studies

Research Objective

- Examine impact of carryover
- 26.3 Kappa SW kraft
- Determine
 - Physical properties
 - Selectivity
- Contribute to future mini O-delignification road map to improve performance
Mini-O Delignification: Experimental Design

Bleaching Sequences
- $(E+O)(E+O)$
- $D(E+O)$
- $(E+O)D(E+O)$
- $D(E+O)(E+O)$

BL Carryover
- No carryover
- 2 kg/ton
- 10 kg/ton
Experimental Conditions

<table>
<thead>
<tr>
<th>Stage</th>
<th>O-Press./psi</th>
<th>% NaOH</th>
<th>Temp./°C</th>
<th>Time/min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E+O)</td>
<td>90</td>
<td>1.25</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>D_{0.05, 0.20}</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>(E+O)D(E+O)</td>
<td>90/0/90</td>
<td>1.25/0/1.25</td>
<td>80/70/80</td>
<td>70</td>
</tr>
</tbody>
</table>

10% consistency

MgSO₄: 0.10%
Impact of Carryover

- Carryover decreases delignification
- Increased levels
 - Decreased response
- Splitting (E+O)
 - Improved response
Impact of Carryover

- Viscosity loss
 - Increases as function of carryover

- Carryover
 - May introduce transition metals

- Placement of (E+O)
 - Affects viscosity loss
Impact of Carryover

- Selectivity
 - Decreases as function of carryover

- Carryover
 - May introduce transition metals

- Placement of (E+O)
 - Affects selectivity
Mini-O with H_2O_2 Studies

Research Objective

- Examine impact of carryover
- Three SW kraft pulps
 - 26.3 Kappa pre-O_2
 - 24.3 Kappa pre-O_2
 - 8.9 Kappa post-O_2
- Determine
 - Physical properties
 - Selectivity
- Contribute to future mini O-delignification road map to minimize capital and enhance performance
Mini-O with H₂O₂ Delignification: Experimental Design

<table>
<thead>
<tr>
<th>Bleaching Sequences</th>
<th>Pulps</th>
</tr>
</thead>
<tbody>
<tr>
<td>• O</td>
<td>• Pre-Oxygen</td>
</tr>
<tr>
<td>• D(E+O)</td>
<td>– 26.3 kappa</td>
</tr>
<tr>
<td>• D(E+O+P)</td>
<td>• Pre-Oxygen</td>
</tr>
<tr>
<td>• (E+O)D(E+O)</td>
<td>– 24.2 kappa</td>
</tr>
<tr>
<td>• D(E+O)(E+O)</td>
<td>• Post-Oxygen</td>
</tr>
<tr>
<td></td>
<td>– 8.9 kappa</td>
</tr>
</tbody>
</table>
Experimental Conditions

<table>
<thead>
<tr>
<th>Stage</th>
<th>O-Press./psi</th>
<th>% NaOH</th>
<th>Temp./°C</th>
<th>Time/min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E+O)</td>
<td>90</td>
<td>1.25</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>(E+O+P)</td>
<td>90</td>
<td>1.25</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>$D_{0.05, 0.20}$</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>(E+O)D(E+O)</td>
<td>90/0/90</td>
<td>1.25/0/1.25</td>
<td>80/70/80</td>
<td>70</td>
</tr>
</tbody>
</table>

10% consistency
BL carryover: 10 kg/ton
$H_2O_2: 0.5\%$
$MgSO_4: 0.10\%$
Mini-O Reinforced with H₂O₂

- Carryover at 10 kg/ton
 - Decreased response

- Pre-O₂ vs. Post-O₂
 - Decreased response in post-O₂

- Delig. Response
 - Proportional to H₂O₂

- (EO)*D₀.05(EO)*
Mini-O Reinforced with H$_2$O$_2$

- **Carryover at 10 kg/ton**
 - Generally decreases viscosity loss

- **Pre-O$_2$ vs. Post-O$_2$**
 - Greater loss for pre-O$_2$ pulp

- **Increased H$_2$O$_2$**
 - Increased viscosity loss
Mini-O Reinforced with H$_2$O$_2$

- Carryover at 10 kg/ton
 - Generally decreases selectivity

- Pre-O$_2$ vs. Post-O$_2$
 - Greater selectivity for pre-O$_2$ pulp
Mini-O Reinforced with H₂O₂

- Carryover at 10 kg/ton
 - Generally decreases brightness response

- (EO) vs. (EOP)
 - Exiting bleaching stage

Diagram showing % Brightness Gain with different conditions:
- D0.20(EOP)
- D0.20(EO)
- (EOP)/0.05/EOP
- (EO)/0.05/EOP
- D0.05(EOP)
- D0.05(EO)

Legend:
- Pre-O2
- Post-O2 with c/o
- Pre-O2 with c/o
Conclusions
Mini-O Delignification: Implications

- Promising technology
- Benefits of enhanced poor man’s O
- Superior performance with pre-O_2 pulps when compared to post-O_2 pulps
- H_2O_2 in last stage of $(\text{EO})^*\text{D}(\text{EO})^*$
 - Increased bleaching performance