Analytical BESC Advances in Characterization of Biomass and Recalcitrance

Y. Pu1,3, N. Jiang1,3, H. Li1,3, M. Foston1,3, R. Samuel1,3, J. Seokwon1,3, A.J. Ragauskas1,3
1School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332; 2Oak Ridge National Laboratory, Oak Ridge, TN 37831
3BioEnergy Science Center, US Department of Energy Bioenergy Research Center

Background

- Sustainable supply of renewable, carbon-neutral energy needs viable, cost-savings biological energy production from plant biomasses.
- Processing is considered to be responsible for the high estimated cost of biofuels from lignocellulosics.
- BESC is aimed to develop improved plant materials with low energy needs viable.
- Analytical characterization can provide detailed knowledge of:
 - The physical and chemical properties of biomass contributing to biomass recalcitrance.
 - Fundamental understanding of the relationship between plant polysaccharides, lignin and how these biopolymers are integrated in the plant cell wall.
 - How biomass properties change during pretreatment and how such changes affect biomass deconstruction by enzyme/microorganisms.

Lignin characterization through NMR spectroscopy

- Baseline and transgenic alfalfa: C3H and HCT gene down-regulation
- Ball-mill lignin isolation
- One-dimensional 1H and 13C NMR
- One-dimensional 31P NMR
- Two-dimensional (13C-1H) heteronuclear correlation spectra

One-dimensional NMR analysis

Solid-state CPMAS 13C NMR analysis

- The alfalfa samples were first holopulped to removed lignin.
- Holopulp samples were then treated with 2.5 M HCl to remove hemicelluloses.
- Samples were packed and spun at 8 kHz for CPMAS NMR.

Perdeuterated ionic liquid for direct NMR analysis of plant cell walls

- Plant cell wall samples were added into perdeuterated pyridinium ionic liquid-dx/DMSO-d6 solution. The mixture was stirred vigorously at 70°C for 1.5 h to form homogeneous system.
- Processing is considered to be responsible for the high estimated cost of biofuels from lignocellulosics.

Microtome sample: MALDI-mass image analysis

- Spatial analysis of biomass chemical constituents across the plant cell wall for native and deconstructed biomass.
- The fresh samples are attached on the mounting head and sectioned into 20~80 um slices in a cryostat (-20°C).
- Extractive free lignin free and hemicellulose free samples are prepared.
- Microtome samples are analyzed using MALDI-mass image analysis.

Conclusions

- Transgenic alfalfa showed significant changes of lignin structure as revealed by NMR.
- Reduced recalcitrance appeared not related to crystallinity of cellulose.
- Ionic liquids provided great potential for better NMR characterization of nonderivatized plant cell walls.

Acknowledgements

This work was supported by the DOE Office of Biological and Environmental Research through the BioEnergy Science Center (BESC).