Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier

Yulin Deng, ChBE/IPST
Georgia Institute of Technology
Solar Cell

Semiconductor solar cell

Dye sensitized solar cell
Fuel cell

- Pt catalysts on anode and cathode
- Polymer ion-exchange membrane (PEM)
- Run at 60–100 °C

H₂ or CH₃OH are most common fuels. Low molecular alcohols such as ethanol, are ok, but conversion efficiency is low;

No one has reported to use polymer as direct fuel
Bottleneck of low temperature biomass direct fuel cell

- Pt cannot cleavage C-C bonds
 e.g. $\text{CH}_3\text{CH}_2\text{OH} + 3\text{H}_2\text{O} \rightarrow 2\text{CO}_2 + 12\text{H}^+ + 12\text{e}^-$
 Pt: the final product can only be acetaldehyde (-2e\text{-}, 16.7%) or acetic acid (-4e\text{-}, 33.3%)
- easily being poisoned by impurities in fuels

Polymeric biomasses such as starch, lignin, and cellulose have not been directly used in alcohol fuel cell
Current biomass fuel cells

Solid Oxide Fuel Cell

- High temperature (>500 °C);
- Burn biomass to syngas

Microbial fuel cell:

- Restrict reaction conditions:
- Easy to be contaminated;
- Enzyme or fungus activity is very selective
- Very low power output,
The direct biomass fuel cell

- Polyoxometalates (POMs) used as photocatalysts
- POMs used as charge carrier

Our key finding: We found a intermediate catalyst that can oxidize biomass under solar light irradiation or thermal treatment, but it can also transport the biomass charge to oxygen through an electric circle.
PS: what’s the POMs

- Keggin structure
- A central tetrahedral [PO₄] surrounded by 12 [MoO₆] octahedrons
- photo-sensitive: O→Mo ligand-to-metal charge transfer (O→M LMCT)

12-molybdophosphate, also as well known molybdenum blue
POMs in our life

POMs are not new chemicals ([PMo$_{12}$O$_{40}$]$^{3-}$ anion discovered in 1826): they have been widely used as Brønsted acid;

- Comparing with H$_2$SO$_4$ and other inorganic acids, POM is less corrosive.
- The Keggin ions are well-known to be thermally stable and reversibly reduced by accepting electrons. This makes them useful as catalysts for a range of organic reactions.
- Some POM's exhibit luminescence.
- POMs have unusual magnetic properties and have been used as storage devices
- Many potential medicinal applications have been reported, such as anti-tumoral and anti-viral applications.
- method of decontaminating water.
POM for pulp and paper industry

• It is not new for paper industry!
• Some potential "green" applications have been reported, such as a non-chlorine based wood pulp bleaching process
• However, it is used as oxidation agent rather than catalyst in pulping and bleaching (POM is consumed during the bleaching process)
Direct biomass fuel working mechanism

Excited to conduction band

Biomass oligomer, CO₂, etc.
Fabrication of the direct biomass fuel cell

(a) membrane electrode assembly (Nafion® 117 PEM, anode made of carbon cloth and cathode loaded with Pt/C catalyst) (b) graphite bipolar plate, (c) acrylic plastic end plate, (d) transparent glass vessel with PMo$_{12}$-starch solution, (e) pump, (f) oxygen inlet, (g) water and oxygen outlet.
Results

Voltage-current density and power-current density plots of different biomasses used in the PMo$_{12}$ reaction system in photo-thermal experiments;

Voltage-current density and power-current density plots of three repeated photo irradiation-discharge cycles with starch and PMo$_{12}$ reaction system (discharged at room temperature);
Summary for direct biomass fuel cell

- The power density is 0.72 mW/cm², 100 times higher than cellulose based microbial fuel cells;
- Close to the best microbial fuels;
- Still be 10 times lower than H₂ and CH₃OH fuel cells;
- The cell continuously run 24 hrs without reducing the efficiency
Possible reactions of lignin with POM

It is possible to output electrical power and produce high value chemicals using lignin-based fuel cell
Differences from traditional cells

- **Solar cell**: directly convert light to electricity
 - Biomass fuel cell: storage solar energy

- **Redox flow batteries**: charge and discharge
 - Biomass fuel cell: powered by biomass and sunlight

- **Alcohol fuel cell**: reactions occur on the Pt loaded anode
 - Biomass fuel cell: POM takes electrons from biomass while reducing its own valence state to Mo$^{5+}$ under light irradiation

- This novel solar-induced hybrid fuel cell offers a new design for converting biomass to electricity.
Advantages

- Combines photochemical and solar-thermal biomass degradation in a single chemical process.
- Does not use expensive noble metals as anode catalysts
- Directly powered by unpurified polymeric biomasses which could significantly reduce the fuel cell cost.
- Can use almost any biomass or their mixture: biomasses, such as starch, cellulose, lignin, and even switchgrass, wood powders, algae, poultry manufacture wastes and animal excrements
- Catalyst is chemical very stable, regenerable which can be used in Varity conditions
- POM is low cost: ~$30-50/lb
- Operation process is very simple: middle school students can made small cells in their home
- It can be used for large power plants and also small power output units
The work has brought broad attentions

- Featured by more than 50 internet websites, newspapers, radios, and sustainable organizations
- Some top scientists believe this is real groundbreaking discovery which opens a new way to use sustainable energies
Georgia Tech working on biomass-powered electricity

Georgia Tech researchers have developed a fuel cell that converts biomass directly to electricity with the help of a catalyst activated by solar or thermal energy.

The hybrid fuel cell can use a variety of biomass sources, including starch, cellulose, switchgrass, powdered wood, algae and waste from poultry processing.

Thank you!
Any Questions?