Deconstructing the auxetic behavior of paper

Prateek Verma

Advisers

Dr. Anselm Griffin
Dr. Meisha Shofner

Paper Science and Engineering Fellow
Materials Science and Engineering
Georgia Institute of Technology

IPST Executive Conference
14th March, 2014
What are auxetic materials?

Poisson’s Ratio

\[\nu_{xy} = -\frac{\varepsilon_y}{\varepsilon_x} \]

x: longitudinal direction
y: lateral direction

<table>
<thead>
<tr>
<th>isotropic</th>
<th>anisotropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_{xy})</td>
<td>-1 ~ +0.5</td>
</tr>
</tbody>
</table>
Certain types of

- Minerals
- Skins
- Arteries
- Bones

...have been found to be auxetic
macroscopic auxetic material

conventional foam

auxetic foam

microporous expanded PTFE

UHMWPE

potential auxetic molecule

Other relevant sources:

Some applications

Paper as an out-of-plane auxetic material

Page, TREND (1969)
Previous reports

- **Ohrn (1965)**

- **N Stenberg (2002)**

Material selection

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (μm)</th>
<th>Grammage (gm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Paper</td>
<td>105±2</td>
<td>75</td>
</tr>
<tr>
<td>Paperboard</td>
<td>270±2</td>
<td>220</td>
</tr>
<tr>
<td>Bamboo Paper</td>
<td>433±7</td>
<td>295</td>
</tr>
<tr>
<td>Cotton Paper</td>
<td>190±3</td>
<td>120</td>
</tr>
<tr>
<td>Filter Paper</td>
<td>178±4</td>
<td>85</td>
</tr>
<tr>
<td>Glassine Paper</td>
<td>52±2</td>
<td>48</td>
</tr>
<tr>
<td>Handsheet SW</td>
<td>542±26</td>
<td>220</td>
</tr>
<tr>
<td>Handsheet HW</td>
<td>586±28</td>
<td>210</td>
</tr>
<tr>
<td>PET Film</td>
<td>144±2</td>
<td>152</td>
</tr>
</tbody>
</table>
Copy Paper

Filter Paper
Experimental setup

- Sample size
 10 cm x 2 cm

- Instron 5566, 10 kN load cell

- Rate: 0.5 mm/min (paper)
 1.0 cm/min (NWs)

- Reported thickness at center of sample*

- 5 samples of each type

*thickness was measured using Mitutoyo micrometer 369-350 at 20-25 kPa
Results (paper)

- Machine direction present, anisotropic
- Marked increase in thickness, $\nu < -2.0$
- Similar production sequence for both → Pulping, bleaching, paper machine, calendaring
Random fiber orientation (filter paper)
- Filter Paper: Moderate increase in thickness before break, made from cotton fibers
- Glassine Paper: Ordinary (+ve) Poisson’s ratio – super-calendering
Results (paper)

Cotton paper

- Machine direction present, anisotropic
- Cotton Paper: Moderate increase in thickness before break

Bamboo paper

- Bamboo Paper: Near zero Poisson’s ratio
Random wet-laying of fibers under hydrostatic pressure
- Largely negative Poisson’s ratios, \(\nu < -4.0 \)
- No paper machining, calendaring orientation or compression
- Close to a cellulose random fiber network
Results (paper)

Sample Name	Poisson’s ratio *
Copy paper | -3.3
Paperboard | -1.1
Bamboo Paper | 0.1
Cotton Paper | -0.3
Filter paper | -0.3
Glassine paper | 1.2
Handsheet SW | -4.8
Handsheet HW | -3.8
PET Film | 0.5

*calculated from linear fit of elastic region

Deformation mechanism

Schematic view of paper.

Unstretched

Stretched

Olov E. Ohrn, Svensk papperstidning, 1965, 68(5), 141-149
\[l^2 = d^2 + x_0^2 \]

\[l^2 = (d - dz)^2 + (x_0 + dx)^2 \]

\[dz = d - \sqrt{d^2 - 2x_0 \cdot dx - dx^2} \]

For \(d = 30 \, \mu m, x_0 = 100 \, \mu m \)
Future work

Task 1
Handsheets possibilities

- Changing pulp type
- Varying stock concentration
- Varying compressive forces?
- Possibility of making non-cellulosic paper?

Task 2
Imaging (SEM)

- Identification of structural features

Task 3
Cross Direction Tests

- For all representative samples
- Lower value of ν anticipated

Task 4
Geometrical model

To consider effect of

- Fiber properties (elasticity)
- Network properties (grammage, density)
- Modeling random layout of fibers

Future work
Thank you!

Questions?